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ABSTRACT

Efficient Estimation of a  Semiparametric 

Partially Linear Smooth Coefficient Model. (December 2002)

Sittisak Leelahanon, B.Eng., Chulalongkom University;

B.B.A., Ramkhamhaeng University 

Chair of Advisory Committee: Dr. Qi Li

In this dissertation I propose a general series method to estimate the semipara

metric partially linear smooth coefficient model. The consistency and v/n-normality 

property of the estimated parameters of the partially linear part are established and 

furthermore it attains the semiparametric efficiency bound when the error is condi

tional homoskedastic. The convergence rates of the estimators of the smooth coef

ficient functions are also derived and a simulation is conducted to make the results 

more concrete.

The application of this model is illustrated by the case of inflation rate forecasting 

using the unemployment rate and the industry capacity utilization rate. Forecasting 

efficiency is compared using the simple autoregressive model, the smooth coefficient 

model, and a semiparametric partially linear smooth coefficient model. Specification 

tests are also performed.

Another application in this dissertation is to show that one can better forecast 

inflation using the past information of money growth by allowing for potentially 

complicated nonlinearities in the relationship between money growth and inflation. 

Many nonparametric and semiparametric models have been used to compare the 

forecasting efficiency with the parametric VAR approach.
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CH A PTER I  

INTRODUCTION

Semiparametric and nonparam etric estim ation techniques have a ttrac ted  much a t

tention among econometricians and  statisticians. One popular semiparametic spec

ification is the partially linear model of Robinson (1988). I t can be genrealized to 

the semiparametric smooth coefficient model. Li e t al. (2002) has shown th a t the 

semiparametric smooth coefficient model can be estim ated consistently by using the 

kernel method. However, it can be shown th a t their estim ator is not efficient; and it is 

hard  to  establish the asym ptotic distribution of an  estim ator of the sm ooth coefficient 

model w ith partially linear component included.

The partially linear sm ooth coefficient model can be used in m any economics 

applications such as dem and analysis, In  chapter II, I  propose to  estim ate the semi

param etric partially linear sm ooth coefficient model using the general series method. 

The advantage of using the series m ethod is th a t one can estim ate the parameters 

and the unknown function simultaneously. Furtherm ore the series estim ators have 

well-defined meanings even when the model is misspecified. However, using general 

series estim ation m ethods, i t  is difficult to  establish the asym ptotic norm ality result 

for the nonparametric components under primitive conditions. Using the results o f 

Newey (1997), one can derive their convergence rates.

One of the central propositions in economics is th a t there is a  relationship be

tween the inflation ra te  and  the growth ra te  of the money supply. This relationship 

has been the basis of a  num ber of policies th a t have been proposed for the US economy, 

including the use of money growth as an  indicator variable for inflation. Friedman

The journal model is Journal of Econometrics.
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(1988) summarized the evidence on the use of money growth as an indicator variable 

for inflation, and concluded that there is no stable empirical relationship between the 

two variables. Friedman and Kuttner (1992) presented extensive evidence confirm

ing that conclusion. Chapter III asks whether the dismissal of money growth as an 

indicator for inflation is warranted. Specifically, empirical research has focused on 

forecasts made using vector autoregressive (VAR) models. If the goal is to produce 

out-of-sample forecasts, however, VAR models may not be the best choice because 

they are often overparametrized. If the system of interest is nonlinear, there may be 

gains from using a nonlinear forecasting model rather than a  linear approximation.

Chapter III allows for potentially complicated nonlinearities in the relationship 

between money growth and inflation. The approach is to ask whether a  nonparametric 

model, that includes money growth, forecasts inflation better out-of-sample than an 

autoregressive model of inflation.

Over the last few decades, the semiparametric methods have been proposed and 

widely used in many real world applications. Both econometricians and statisticians 

have developed the theory specifically for the semiparametric model. One of the 

most popular model is the Robinson’s (1988) semiparametric partially linear model. 

However, the literature assumes that the bandwidth h is prespecified or simply given 

by some ad-hoc method.

It is well known that the bandwidth is of crucial importance in nonparamet

ric and semiparametric estimations. The optimal bandwidth is needed to obtain a 

good estimate. Many data-driven bandwidth methods have been proposed and the 

commonly used ones are the cross-validation (CV) method and generalized cross- 

validation (GCV) method. Hardle, Hall and Marron (1988) defined the theoretically 

optimal bandwidth and show that the bandwidth obtained by the cross-validation 

method converges in probability to the theoretically optimal value.
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Chapter IV will consider the convergence behavior of the cross-validation band

width under the semiparametric partially linear model setting. I propose that the 

finite dimensional parameter estimates and the cross-validation bandwidth can be 

obtained simultaneously by minimizing a sum of squared errors. This means the 

bandwidth need not be prespecified. I will show that the parameter estimates are 

still v/n-consistent and asymptotically normally distributed and the cross-validation 

bandwidth estimates also converge in probability uniformly over some shrinking com

pact sets to the theoretically optimal bandwidth.
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CHAPTER II

EFFICIENT ESTIMATION OF A SEMIPARAMETRIC PARTIALLY LINEAR

SMOOTH COEFFICIENT MODEL

A. Introduction

Semiparametric and nonparametric estimation techniques have attracted much at

tention among econometricians and statisticians. One popular semiparametic speci

fication is the partially linear model of Robinson (1988),

Yi =  X,-/3 +  g (Z,) -f- ui i =  1, . . . ,  n (2.1)

where X'/3 is the parametric component and g (Z,) is the nonparametric component 

which is the unknown function. This model can be genrealized to the semiparametric 

smooth coefficient model

Yi =  X'fi (Zi) +  IH i =  1 n (2.2)

where 0 (z )  is a  vector of unknown smooth functions of Z,-. The smooth coefficient 

model is an appropriate setting, for example, in the framework of a cross-sectional 

production function where X,- =  (Labor,-, Capital,-) and Z, =  i?&Df. The smooth co

efficient model suggests that the labor and capital input coefficients may vary directly 

with firm’s R&D input, so the marginal productivity of labor and capital depend on 

firm’s R&D values. The partially linear model suggests that the R&D variable has a  

neutral effect on the production function, i.e., only shift the production frontier. In 

contrast, the smooth coefficient model allows the R&D variable to have a non-neutral 

effect on the production function.

The semiparametric smooth coefficient model has the advantage that it allows
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more flexibility in functional form than a parametric linear model or a  semiparamet

ric partilly linear model. However, if the dimension of Zi is greater than one, the 

smooth coefficient model still suffers form the curse of dimensionality problem. Li 

et al. (2002) has shown that the semiparametric smooth coefficient model can be 

estimated consistently by using the kernel method. However, it can be shown that 

their estimator is not efficient; and it is hard to establish the asymptotic distribution 

of an estimator of the smooth coefficient model with partially linear component in

cluded. So, in this chapter I will consider the semiparametric partially linear smooth 

coefficient model

Yi =W 'i l  +  X'il3{Zi) + u i i =  l  , . . . , n  (2.3)

The partially linear smooth coefficient model can be used in many economics 

applications such as demand analysis, where in the model, Vj- =  Quantity Demands, 

Xi =  (1, Pricei), Zi =  Price o f  Substitution goodi and Wf =  Incomei. Bresna- 

han(1982) has shown that in some situations one needs to allow the effect of substi

tution good price not only shift the demand curve but also change the slope of the 

demand curve. In this chapter I propose to estimate the semiparametric partially lin

ear smooth coefficient model using the general series method. The advantage of using 

the series method is that one can estimate the parameters and the unknown function 

simultaneously.1 Furthermore the series estimators have well-defined meanings even 

when the model is misspecified. However, using general series estimation methods, it 

is difficult to establish the asymptotic normality result for the nonparametric compo

nents under primitive conditions. Using the results of Newey (1997), one can derive 

their convergence rates.

This chapter is organized as follows. Section B discusses the estimation method

lSee Li (2000).
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and states the main theorem. Section C shows the simulation results. Section D 

applies the partially linear model to inflation rate prediction using the unemployment 

rate and the industry capacity utilization rate. Section E concludes and the last 

section contains the proofs.

B. Estimation

Consider the partially linear smooth coefficient regression model:

Yi =  W[7  +  X'(3 (Zi) +  Ui i =  1 , . . . ,  n (2.4)

where the prime denotes transpose, Wi =  (Wu, • - •, Wiq)' is a  q x 1 vector of random 

variables, 7  =  (7 ^ . . .  7 ,) ' is a  qx  1 vector of unknown parameters, X  =  (Xt l, . . . ,  X,d)' 

is a d x 1 vector of random variables, Z, =  (Za , . . . ,  Z,r )/ is an r  x 1 vector of random 

variables, and p  (•) =  (/?i (•),•••,  Pd (•))' is a dx  1 vector of unknown smooth functions. 

Ui is an error term with E (ui\Wi, X„ Zp =  0.

Using series estimator method, I approximate Pi (z) by a linear combination of ki 

basis functions, i.e. pf' (z)' of' ,where pf‘ (z) =  \ptl (z) , . . . ,  p/*( (z)]' is a ki x 1 vector 

of basis functions and a f ' =  ( o ^ , . . .  aikP' is a  k[ x 1 vector of unknown constants.The 

approximation functions pf‘ (z) have the property that, as ki grows, there is a  linear 

combination of pf' (z) that can approximate any smooth function pi arbitrarily well 

in the mean squared error sense.

Define the K  x  1 matrices p f  (Xi(Zt) =  ( x a Pil (Z,-)', . . . ,  X idph/  (Z ,)') ' and 

a  =  ^a*1' , . . . ,  acjd'J , where K  =  $^f=1 &/, hence, I use a  linear combination of K  

functions, p f  (X„ Zi)'a, to approximate X(p (Z,-). Hence I can rewrite (2.4) as:

Yi =  W[7  +  (Xu Zi)' a  +  (X'P (ZP -  p f  (Xu Zi)' a)  +  m (2.5)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

7

In matrix notation, let Y  =  (Yi, . . . ,  I^ )', u =  (ux, . . . ,  un)', IF =  (IFX, . . . ,  IFre)', 

G =  (X[(3 (Zx) , . . . ,  X'J3 (Z„))'t and P  =  (p f  (Xx, Zx) , . . . ,  p* (X„, Zn) ) \  Hence, the 

model (2.5) can be written in matrix notation as:

Y  =  IFy +  P a +  (G — Pa) +  u (2.6) 

Define M  =  P  (P 'P ) -1  P ' and A =  M A. Premultiply (2.6) by M  leads to:

Y  =  IFy +  P a  +  (<7 -  P a )  +  u (2.7) 

Subtracting (2.7) to (2.6) gives:

Y - Y  =  ( iF  -  I f )  7  +  ( c  -  (?) + u - u  (2.8)

The proposed estimator of 7  is the least squares regression of Y  — Y  on IF  — IF, i.e., 

7  =  -  I f ) '  ( iF  -  W )  ( iF  -  I f ) '  { Y  -  y )  (2.9)

and the estimator of 0 (z)  is /3 (2 ) =  (/3X (2 ) , . . . ,  pd ( r) ) ,  where /3/ (2) =  pf‘ (2 ) df' 

,and d  =  (a*1' , . . . ,  djjj*') can be calculated by:

d  =  (P 'P ) -1 P ' (V -  IF7 ) (2.10)

( i f  -  i f ) '  ( i f  -  i f )  j and (P 'P ) -1Under the assumptions given below, both 

are asymptotically nonsingular, hence, 7  and d  given in (2.9) and (2.10) are numeri

cally identical to the least squares estimator of regressing Y  on (IF, P ).

First I introduce the definition of the class of smooth coefficient functions.

D efinition II. 1 A Junction g (x, 2 ) belongs to a smooth coefficient class of functions 

Q if (i) g (x, 2 ) =  xihi (2 ) for some hi (2) and g (x, 2 ) is continuous in its support 

Si, where Si is a compact subset ofW +d, and (ii) E  [<7 (X, Z)2] — E  [Xfhi (Z)2] <
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oo.

Note that, by the second condition in the definition, the function g is an element 

in L2 and by the independence of X  and Z, which will be assumed later, this implies 

that hi is also an element in L-i-

For any function /  (x, s), let Ec  [ /  (x, -)] denote the projection of /  (x, 2) onto the 

smooth coefficient space Q (under the Z^-norm). That is, Ec [f (x, 2 )] is an element 

that belongs to Q and it is the closest function to /  (x, 2 ) among all the functions in 

Q. More specifically,

E  [ ( /  (Xu Zi) -  Ec  [f (Xu Zi))) ( /  (Xu Zi) -  Ec  [f (X h Zi)))'] (2 .11)

=  inf E
h i ^ L i

(Xu Zi) -  22 Xuh & )j (xu zi) ~ 5Z  Xilhl ^

where the infimum of (2 .11) is in the sense that, for all g (x, z) =  5 Zf=1 xiht (z) 6  Q 

(or equivalently for all hi 6  L-f),

E  [ ( /  (X it Zi) -  Ec  [f (Xu Zi)\) ( /  (Xu Zi) -  Ec  [f (Xh Zf)])'] (2 .12)

<  E ^ f  (Xu Zi) -  £  Xuhi (Zi)^j ( f  & u  Zi) -  2 2  Xuhi ( Z ^

where for square matrices A and B, A <  B means that A — B is negative semidefinite.

P ro p o sitio n  II . 1 Define 9 (X , Z) =  E [W\X, Z]. There exists m (X, Z) =  Ec  [9 (X, Z)\ 

which is the solution of the minimization problem:

E  [(0 (Xf, Zi) -  m (X,-, Zi)) (19 (Xu Zi) -  m (X£, Zt))'] (2.13)

=  inf E
h[€L2 ^  (Xu Zi) -  2 2  Xuhi (Zi^j ^0 (Xf, Zi) -  2 2  Xuhi ( Z j j

Proof. The proof is given in the last section.
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Since Wi =  6 {Xiy Zi) +  viy where E[vi\Xi,Zi] =  0. Hence, one can find the 

projection of Wi  on Q as the following:

inf E  [{Wi -  g {Xu Zi)) {W,i- -  9 { X ,  Zi))']

=  inf E [{0 {Xu Zi) -  g {Xu Zi)) {6 { X u Zi) -  g {X iy Zi))'] +  E  [viv[]
g€y

=  E [{6 {Xu Zi) -  m  {Xu Zi)) {0 {Xu Zi) -  m  { X iy Zi))'] +  E  M  

=  E [{Wi -  m  {Xu Z ) )  {Wi -  m  { X iy Zi))'] (2.14)

Since Vi _L Q, therefore, m {Xu Zi) is also the projection of Wi on Q. Note that 

m {Xu Zi) has dimension q x 1. Let mj {Xu Zi) be the j th  component of m {Xu Zi),

i.e. m {X it Zi) =  {mi {Xu Zi) , . . . ,  m,  {X iy Zi))'.

The following assumptions are needed to establish the asymptotic distribution 

of 7  and the convergence rates of /3 {z).

A ssum ption II . 1 (i) {Yi, Wu X iy Zi)*=l are independent and identically distributed 

as (K, W, X ,  Z) and the support of {W ,X ,  Z) is a compact subset ofR q+d+r: (ii) both 

0 {Xi, Zi) and var [K| W =  w, X  =  x, Z  =  s] are bounded functions on the support of 

{ W , X , Z ) .

A ssum ption II.2  (i) For every K  there is a nonsingular matrix B such that for 

P K {x,z) =  BpK {x,z); the smallest eigenvalue of E  [PK {Xiy Zi) P K {Xu Zif] is 

bounded away from zero uniformly in K ; (ii) there is a sequence of constants Co {K) 

satisfying sup(Xr. )65 \\PK {x, c)|| <  Co (AT) and K  =  K n such that (Co {K))z K / n  -*■ 0 

as n —* oo, where S  is the support of {X, Z).

A ssum ption II .3  (i) For f {x , z )  =  g{x,z)  =  £?= i x'P {z) or f { x , z )  =  m, {x, z) 

{j  =  1 , . . . ,  q), there exists some St > 0  (Z =  1, . . . ,  d), a f  =  a fK =  (a*1' , . . . ,  ,

suP(x^)e^ \ f { x> ~) _  p K  (x>ZYa f\ =  ^ ( 5 Zf=i 03 ann{k i , . . . , kd} -*• oo; (ii)

\fn ^ £ f=l k fSl̂  —► 0 as n —► oo.
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Assumption ELI is a standard assumption of the semiparametric regression model. 

Assumption II.2 imposes an orthonormalization on the approximating functions and 

ensures that P 'P  is asymptotically nonsingular. Assumption II.3 says that there 

exists some J£ >  0 (/ =  1, . . . ,  d) such that the uniform approximation error to the 

function shrinks at rate X)f=l k f6t. The assumption II.2 and assumption 11.3 are 

not the primitive conditions but it is known that many series functions satisfy these 

conditions, e.g., power series and spline.

Under the above assumptions, I can state the main theorem.

T h eo rem  II.1  Define £i =  Wi — m (AT,-, Z£), where m(Xi ,  Zi)is defined by (2.13), 

and assume that $  =  E  [£;£(-] is positive definite, then under assumption II. 1 to II. 3, 

I  have

(i)yjn (7  — 7 ) —► N  (0, S) in distribution, where E =

where SI =  E[a* (Wu X it Zi) e.-efl and o'- (Wit Xu Zi) =  E  [u?|lV£ =  w, X, =  x, Z£ =  z].

(ii) A consistent estimator o /E  is given by E =

where 4  =  1 £ " =l "  Wi) (W  -  w t f  ,Cl =  l £ ' U  “f (W  -  Wi) ( w t -  W ?j,

Wi is the ith row o fW  and h, = Y i — W[7  — (X£, Zi)' a.

Proof. The proof is given in the last section. ■

Under the conditional homoskedastic error assumption, E[uf\Wi, X£,Z £] =  a*, 

The estimator 7  is semiparametric efficient in the sense that the inverse of the as

ymptotic variance of y/n (7  — 7 ) equals the semiparametric efficiency bound, from  

the result of Chamberlain(1992), the semiparemetric efficiency bound for the inverse 

of the asymptotic variance of an estimator of 7  is

Jo =  inf E  [(Wi -  g (Xh Zf)) (var [ui\Wit X u Z,-])"1 (Wi -  g (Xu Zi))'] (2.15)

Under the conditional homoskedastic error assumption, var [ui\Wi, X{, Zi] =  a'i,
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then (2.15) can be rewritten as

Jo -  inf E  [(Wi -  g (X t, Zt)) W  ~  9 (* n  Zi))']
(7‘  g€G

=  [ W  -  m (*<■ z ‘»  (w < ~ m (x " 2 .))']

=  =  |  (216>

Also, under the conditioned homoskedastic error assumption, ft =  and 

thus the variance of 7  equeds to a£$_ l. Hence, £ -1  =  J0 which implies that 7  

attains the semiparemetric efficiency bound under the conditional homoskedastic error 

assumption.

However, under the conditioned hetroskedastic error, E [uf | W£, Xi, Zi] — 

cr\ (W,, Xi, Zi), the estimator 7  is not semipareunetric efficient. One cem improve the 

semiparametric efficiency of the estimator by using GLS instead of OLS. First assume 

for a  moment that (w, x, z) is known, let <r, =  s /a t  {Wi, Xi, Zi) and assume that <r, 

is bounded away from zero. Intuitively, the estimator 7g l s  obtained from regressing 

Yi/(Ti on Wi/ai  and plc ( X i,Zi)  /<Ji is semiparametric efficient because u,/(T, is now 

conditional homoskedastic.

In practice, a \ (w, x, z) is unknown. One can use the OLS method to estimate 7  

and d  by using (2.9) and (2.10) and then estimate u, by u£ =  Y i-W ^  - P *  (Xif Zi)' d . 

Based on (uf, Wi, Xi, Z,)"=l, one can get the estimator <x£ =  \jSr\ (W£, X it Zi) where 

a \  (w , x, z) can be obtained by using some nonparametric methods. Then regressing 

Yi/&i on Wif&i and p f  (X i , Zi)  /d £ will result in a semiparametric efficient estimator 

of 7  provided that df (w, x, z) converges to of (w, x, ~) uniformly for all {w, x, z) in 

the compact support of (W,, X , Z) with some certain rates and perhaps with some 

other extra regularity conditions.

The next theorem gives the convergence rates of g (x, z) =  pK  (x, z)' d  to g  (x, z) —
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T h eo rem  II.2  Under assumption II.1 to II.3, let S  denote the support of (X,Z),  

then

(i) SUP(IJ)6S [ 9  (x, : ) - g  ( i ,  z ) \= O f (<b(K) ( / K / s / n  +  E ? , ,  h7‘j ) -  

(*) i  Zi) "  9 (■*. -Zi) ) 2 =  Ov ( K /n  +  £ ? „ ,  * f  " ' ) .

(m) (5  (x, z) — g (x, z))2 dF (x, z) =  Op ( K / n  +  Y it-i > w îere F is the

joint cummulative distribution function of X  and Z.

Proof. The proof is given in the last section. ■

Note that the convergence rate of g (x, z) to g (x, z) using semiparametric esti

mator 7  is the same as the convergence rate of nonparametric series estimators. This 

is to be expected because the convergence rate of 7  to 7  is faster.

The next theorem states the convergence rate of ft (-) =  pf‘ (2) dfl to ft (2 ) for

I =  1, . . . ,  d.

T heorem  II.3  Under assumption II. 1 to 11.3, let S . denote the support of Z, then, 

for I =  1 , . . . ,  d,

(i) sups65,1A (~) -  A {S)\ =  Op (Co (K) ( V K / y / n  +  kfs‘) ) .

(*) £ S X i  (A  (*) "  A (*))* =  ( t f /n  +  Af2* ) .

(Hi) f s  ^ft (2 ) — ft (2 )^ dFz (2) =  Op ^K / n  4- kf 2Sl̂ , where Fz is the cummu

lative distribution function of Z.

Proof. The proof is very similar to the proof of theorem II.2, so it will be omitted 

here. ■

The remaining of this chapter is to give the primitive conditions for power series 

and B-splines such that the assumption H .l to H.3 hold. Newey (1997) gave such 

conditions and they are restated here for conveniences.
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A ssum ption II.4  (i) The support of (X,  Z) is a Cartesian product of compact con

nected intervals on which (X , Z) has an absolutely continuous probability density func

tion that is bounded above by a positive constant and bounded away from zero; (ii) for 

I =  I , . .  . ,d,  fi (x, z) is continuously differentiable of order ci on the support S , where 

fi (x, z) =  x/3[ (z ) or f  — mi.

A ssum ption II.5  The support of (.X , Z) is [—1, l]d+r.

Newey(1997) showed that assumption II.4 implies that assumptions II.2 and II.3 

hold for the power series with Co (AT) =  O (K) and Si =  c\j (r -F I), Z =  1 , . . . ,  d. Also 

Newey(1997) showed that Assumption II.4 and IL5 imply that assumption II.2 and

11.3 hold for B-splines with Co {X) =  O Hence, the results of theorem II.l to

11.3 still hold with Co (AT) replaced by K  for the power series and Co (X) replaced by 

\ [K  for B-splines.

C. Simulation

To concrete the results, I conduct a Monte Carlo simulation. The first data generating 

process (DGP1) based on the true regression,

Yt = A  +  0-5iFj +  Xi  +  Xi  * 24Z? exp(-24Zt) +  i =  1 , . . . ,  n (2.17)

where (ut}?=i is i.i.d. vector of normal random variables with mean 0  and variance 

0.25, {Zt}p=l is generated by the i.i.d. uniform[0,2] vector of random variables, W  =  

V\ 4- 2V3 and X  =  V2 -‘r V3, where Vj, j  =  1,2,3, are i.i.d. uniform[0,2] vector of 

random variables. Let gi =  4 -t-O.SW, + X i + X i  • 24Zf exp(—24Z,) be the imdisturbed 

value of the function. 2 For each sample size n =  100 and n =  200, I repeat the

'T his function is picked from an example in Hart (1997).
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simulation for 2000  times for each estimation method and compare the average mean 

squared error (AMSE) of 7  and g defined by A M SE tf) =  7̂  $ 3 ^ °  (7 — 0.5)2 and 

AMSE(g)  =  2^5  £ * 2 °  ASE  (&) where 7* and ASE(gi) =  \Y?j=i(9a ~ 9 i j f  are the 

estimates of 7  =  0.5 and the average squared error (ASE) of g for the ith iteration 

respectively. There are three estimation methods conducted in this simulation, i.e., B- 

Spline, Power Series, and Kernel method. For a B-spline method, I use the univariate 

B-spline basis function with order r  =  4 defined by

 »r) =  1 (2-18)

where t0, . . .  , t r are the evenly spaced designed knots on the support of Z,  and h is 

the distance between knots. The estimates from the kernel method is obtained by 

first estimate 7  by

7  =  [(XV -  W)'(XV -  VF)] " l (W -  lF ) '(y  -  Y)  (2.19)

where W  and Y  are the kernel estimation of E\}V\X, Z] and E\Y\X, Z] using the 

plug-in bandwidths hx =  xa_d.n~1̂ 5 and h. — za(i.n~l/5, where x3,d. and are the 

standard deviations of X  and Z  respectively. Then I estimated P(z) by using the 

method of Li et al. (2002) replacing YL in their formulae with Yi — XV  ̂ and included 

the constant term into the matrix X,  i.e. X  =  (1, X ). So the estimate 7  is now 

obtained by regressing Yi — Xi/3(Zi) on XVi and the estimate <7, =  IF/ 7  -t- X 0  (Z,) 

where j3 (Zi) is estimated by using the method of Li et al. (2002) replacing Yi in their 

formulae with Yi — W fi and AT, with X-

The second data generating process (DGP2) based on the true regression,

Yi =  4 +  0.5W;- +  Xn  +  ATtl - 24 Z \  exp(-24Zt) +  X i2Zi +  X i2 sin (Zi) +  it,- (2.20) 

where {uiYt=i is i.i.d. vector of normal random variables with mean 0  and variance
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0.25, {Zi}}Lt is generated by the i.i.d. uniform[0,2] vector of random variables, W  =  

+  2V3 and X x =  V2 +  V3, and X 2 =  V4 +  0.5V£, where Vj, j  =  1,2,3,4, are 

i.i.d. uniform[0,2] vector of random variables. Now let gi — 4 +  0.5Wi +  Xn -F Xu  - 

24Zf exp(—24Zj) +  X i2Zt +  X l2 sin(Zf) be the undisturbed value of the function. The 

estimation method, the sample size and the number of iteration are the same as I did 

in DGP1 but replacing X  with ( Xl} X 2) and X —{ \ , X u X 2) in the kernel method. 

The simulation results are presented in Table I.

Table I. Simulation Results

DGP1 DGP2

n =  100 n =  200

00II8 n =  200

B-Spline AMSEifj) 0.0027831 0.0013348 0.0035712 0.0015268

AXfSE(g) 0.0339976 0.0208716 0.0449357 0.0268447

Power Series A M S  E ^ ) 0.0028169 0.0013550 0.0036243 0.0015515

AMSE(g) 0.0357869 0.0243554 0.0456148 0.0295840

Kernel AM SE{ 7 ) 0.0046368 0.0020657 0.0071594 0.0030235

AMSE(g) 0.0884829 0.0644006 0.1152154 0.0857579

From Table I, one can see that the B-Spline method gives the smallest ANISE of 

both 7  and g for every sample size and for both DGPs. Also the power seires method 

has smaller ANISE of both 7  and g for every sample size and for both DGPs than 

the kernel method. Hence, this simulation shows that one can get the more effcient 

estimation using series estimation and the simulation results fit with the theory.
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D. Application

The application of this model is illustrated by the case of inflation rate forecasting 

using the unemployment rate and the industry capacity utilization rate. In the macro

economic literature, the inflation rate and the unemployment rate have a nonlinear 

relationship known as the Phillips curve. This section will propose the method to 

forecast the future inflation rate from the past unemployment rate and these two in

dicators. The data series run from January 1967 to April 2004 and were downloaded 

from the St. Louis Federal Reserve website.3

The forecasting efficiency will be compared using many different models such 

as the simple autoregressive model (AR model), the smooth coefficient model (SC 

model), and a semiparametric partially linear smooth coefficient model (PLSC model). 

For the parametric model analysis, I use the SIC to choose the number of lags in the 

AR model, and calculate out-of-sample mean squared prediction error (MSPE) for 

this model (for 100 forecasts). Since the SIC choose 2 lags in parametric model, hence 

I will also use 2 lags in the semiparametric models. Therefore, consider the following 

models:

AR model: 7t£ — oro ■+■ Qi7Tt_s +  o 27r£_.,_i +  <*3ih—s +  a +

PLSC model: 7rt =  a 0( ^ - 3) +  ai7r£_5 +  a 27r£_a_ t -f- p ( z t- 3)u t-s  -F e£

SC model: tt£ =  a 0(2t_s) +  a 2 (zt-s)irt-s-i +  i3(zt-s)ut- 3 + e t

where s — 1,6,12,24, 7t£ is the inflation rate a t time t, ut is the unemployment rate 

a t time t, zt is the industry capacity utilization rate a t time t, and the e£ is the error 

term at time t  satisfies all the assumptions in section B.

3http: /  /  www.research.stlouisfed.org/ fred/
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Each of these models are estimated and calculated the mean squared prediction 

errors from the formulae M S P E  =  ^  UtlligC71* — ^t)2> where the ir£ is the inflation 

prediction using the data up to time t  — 1. The results show that the MSPEs of 

the semiparametric models are smaller than the MSPEs of the parametric models. 

To identify the model, I also do the following in-sample specification tests for s — 

1,6,12,24.

Test 1:

H0: TTt = a 0 +  ayWi-s +  4* a3ut- a 4- ct4zt- a -I- e£ almost surely

Hi'. 7rt =  Oo(-t_3) 4- a i(^ t_s)7r£_s 4- a2(5t_a)7r£_J,_i 4- /3(.z£_s)«£_a 4* e£, oco(zt_a) ^  

a 0, c*i(zt- a) 7̂  « i and a 2(^£_s) ^  o» almost surely 

Test 2:

H0: ir£ =  ooC-f-a) 4- a i 7rt_s -(- a 27r£_s_i 4- (3(zt-.a)ut- a 4- e£ almost surely 

Hit 7r£ =  ao(~£_s) 4- a i( s £_s)7r£_s 4- a 2(~£_s)7T£- 3- i  4- 0{zt- a)ut^a 4-e£, q;i(3£_») ^  

and a 2(2£_s) ^  <*2 almost surely 

The test statistic 4 is

(2.21)

where o 1 is the estimator of the error variance under Hi. The 95% confidence interval 

of this test statistic is generated by wild bootstrap method. The test results are shown 

in table II.

From Table 13, one can conclude from Test 1 that, with 95% confidence, the AR 

model is misspecified and, from Test 2, one cannot reject the semiparametric partially 

linear smooth coefficient model. These results show that the semiparametric partially 

linear smooth coefficient model is appropriate to use in inflation rate prediction usin g

4 See Hart (1997) for details of this test.
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Table II. The Specification Tests between Autoregressive Model, Smooth Coefficient 
Model and Partially Linear Smooth Coefficient Model

Horizon 1 M onth 6  Months 12 Months 24 Months

Test 1 

Test 2

Reject H o  

Not Reject H o

Reject H o  Reject Ho 

Not Reject H q  Not Reject H o

Reject H o  

Not Reject H q

the unemployment rate  and the industry capacity utilization rate.

E. Conclusion

In this chapter I propose using a  general series m ethod to  estim ate the semiparamet

ric partially linear sm ooth coefficient model. I show th a t the estim ator 7  has the 

V^n-normality property and it attains the sem iparam etric efficiency bound when the 

error is homoskedastic. I also show th a t it is easy to modify the m ethod to the het- 

roskedastic error case and tha t the estim ator is still efficient under the modification. 

The convergence rate of the smooth coefficient function is proven and the primitive 

conditions of the  power series and B-spline are restated  here as examples.

W here the M onte Carlo simulation is also conducted, three different m ethods 

of estim ation are used. I  find th a t for every sample size and every d a ta  generating 

process used in this simulation, the series estim ations perform better than  the kernel 

method. In  particular, the B-spline m ethod performs best and the kernel m ethod is 

the last.

Finally the  application of the semiparametic partially  linear sm ooth coefficient 

model is illustrated by applying it to  forecasting the inflation ra te  using the  unem

ployment ra te  and  the industry capacity utilization rate. The specification test results
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show th a t the semiparametric partially linear smooth coefficient model is more ap

propriate than  the full sm ooth coefficient model and the param etric autoregressive 

model.

F. Proofs

Throughout this section, let C  denote a generic constant th a t may be different in 

different uses and The norm ||-|| for a  m atrix A  is defined by ||A|| =

[tr(A'A)]l/2.

Proof of Proposition II.1. F irst consider the case that 9 (Xt , Zt ) is scalar. If /  

and g are functions from S  to  R  such th a t E [f2] and E \g2\ are bo th  finite, define the 

inner product ( / , g) =  E [ fg \ .  Hence the class Q defined in Definition 1 is a  Hilbert 

space. I need to  show th a t there exists m  (x, z) tha t satisfies

E  [(9 (Xjt Z i ) - m  ( X ,  Z i))2] =  .inf E (2.22)

If 9 6  Q then the solution m  — 9 is obvious, so consider when 9 £  Q. For 

simplicity, I will prove only d =  2, the proof for d  >  2 follows the same arguments.

Let {a, (2 )}“^  be a complete base functions th a t can expand any hi (z ) £  L2 

and also let {6* (z )} * L be a  complete base functions that can expand any h2 {z) 6  L2. 

Define, for i  €  N, <̂ 2i_ 1 =  ah 0 , ( 2 ) and (f2{ =  x2bi{z). Hence, {<Pj(x iZ)}'*Ll is a 

complete base fruitions th a t can expand any g (x, 2 ) =  xihi  (2 ) +  x2 h2 (2 ) €  Q. Using 

Gram-Schmidt orthonormalization procedure to orthonormalize {cpj (x, so I

will get the orthonormal basis functions {<pj (x, 2 )} ° lr  Now define

OO

m  (x, 2 ) =  4>j (x, 2 ) (2.23)
j=i

where /3j =  (9 (Xt-, Z{) , fa (X it Zt-)) =  E  [9 (Xi, Zi) fa-(Xi, Zi)\. Now let r /(x ,2 ) =
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9 (x, z) — m (x, z), substitute into (2.23) I get

OO

9 (x, z) =  ^ 2  $ 5  (x>z ) Pi +  V (x>~) (2.24)
i= l

Multiply (2.24) both sides by (pj (x, z), take expectation and using the orthonor- 

maility of {(pj (rr, 2)}°lp I get

e  tn (Xi,  Zi) 4>j (X,  Zi)\ = 0  v j e N  (2.25)

This implies that q is orthogonal to the basis functions {(pj (x, r )} ° l1 and hence 

it is also orthogonal to any function /  e  G, i.e.,

E [q (Xi,  Zi) f  (Xi, Zi)} = 0  \ f f  e g  (2.26)

Now square both sides of (2.24) then take expectation; using the orthonormaility 

of {4>j (x, ~)}^1 1 and the fact that q _L {<i>j (x, c)}“  lt I get

OO

E  [0 ( X it Zi)2] = ' 5 2 / 3 ] +  E [ n (Xi, Z i f ]  (2.27)
j = i

Since E \9 (Xi, Zi)2] <  0 0 , therefore Yl'jLi P j afso finite. This implies that 

YlJLi 4>j (x , ~) Pj will converge to the well-defined function in Q and because 9 — m+r7, 

m e G  and q ± G ,  m (x ,z )  reaches the infimumof (2.22).

Next suppose that 9 (Xi, Zi) is a q x 1 vector. Let 9 ( X iy Zi) =

(0i ( X u Z i ) , . . . , 9 q ( X h Zi))r and m (X h Zi) =  (rm (Xu Z t) , . . . ,  mq (X u Zi))' where, 

for s =  1 , . . . ,  q, m 3 (x, z) is defined as (2.23) with pj replaced by pSj =

E  \9a (Xi,  Zi) (pj (Xi, Zi)\. Define q =  9—m  as before, then follows the same arguments
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as above, it can be easily shown that (rji,. . . ,  T]q) =  77 X Q; hence, for any g e Q,

E  [(0 — <?)(# — g)'] =  E[(0 — m +  m — g)(0 — m +  m — g);]

=  E [(0 -  m) (0 -  m)'] +  E  [(m -  g) (m -  g)']

+ 0  (2.28)

where the 0 comes from the facts that 77 =  0 — m _L Q and m — g E Q. Since 

E  [(m — g)(m — <7/ ]  is positive definite and m EG, (2.28) implies that

E  [(0 — m) ( 0 -  m)'] =  inf E [ ( 0 - g ) ( 0 -  g)']

■

Proof of theorem II.l. Recall that 0 (Xi, Zi) =  E  [Wi| A,-, Zi[, Vi =  Wi—0 (Xi, Zi), 

Si =  Wi — m (Xi, Zi) and 1]i =  0 (Xi, Zi) — m (Xi, Zi). I will use the following short

hand notations: 0,- =  0 (Xi, Zi), g{ =  X'i/3(Zi), and m, =  m(Xi,Zi) .  Hence, Vi =  

Wi — 0i, Si =  0i 4- Vi — mi, rji =  0i — mi. Finally, the variables without the subscript 

represent the matrix, e.g. 0  =  (0 U . . . , 0n)'.

Also recall that for any matrix A  with n rows, I define A =  P  (PlP)~l P tA. 

Apply this definition to 0, m, 77, u, v, I get 0, fh, fj, ii, v.

Since Wi =  0i +  Ui and 0, =  771, 4-77*, I get Wt — 77* 4 - u« -i- tti* and W, — fji -4- 0. -Fift*. 

In matrix notation, W  =  77 4- v  +  m and W  =  77 4- £ 4- rn. Therefore, I have

W  — W  =  rj +  v +  (m — m) — v — rj (2.29)

For scalars or column vectors A,- and 5 ,, I define S a , b  — H i AiB\ and S \  =  

SArA. Note that if ^  exists, then from (2.8) and (2.9), I get

,/H (7  — 7 ) =  Sirl_(y. \ /nSw_Xy G_Q+tl_- (2.30)
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For the first part of the theorem, I will proof the followings: (i) Sw_v\r =  $  -F 

op (1), (ii) Sw _lVtG_c =  op (n-*/2), (in) SW-w,u =  ° p  (n~1/2) and (iv) y/nSw_vV u -> 

iV (0, Q) in distribution.

Proof of (i): Using equation (2.29), I have

=  Sq+u+fjn—m)—5—rj ~  ^ tj+ v  "F ~F 2 5 r}+u,{m—m)—v—i} (2-31)

The first term, S„+l, =  £ Ofc +  vi) (Vi +  vd' =  £ 5Zi =  $  +  °p (!) by law  o f 

large numbers.

The second term, <  3 (S(m_,h) +S$ +  S$) =  op (1) by lemma II.3,

lemma EI.4(i), and lemma II.4(iii).

The last term, S n+u,{m-rh)-D-r, <  (S^+„S(m_ * )_ s^ ) 1/2 =  (Op (1) op (1) ) 1/2 =  

Op (1) by the preceeding results.

Proof of (ii): Using equation (2.29), I have

Sw-\V.G-G =  Ĵi+v+(m—m)—v—fj,G—G

~  S^+v.G- 6  Sm-rh,C-G ~  ^v.G-G ~  $rj,G-G (2.32)

The first term, Sl)+uG_G <  (S^+VSG_ G) 1/2 =  Op ( ^ f =1 fcf*) by lemma II.3.

The second term, Sm_^<G_G <  (Sm-ihSG_G) 1/2 =  Op *1" ^ )  by lemma

n.3.
The third term, SSG_G <  (SvSG_G) 1/2 =  op (1) Op by lemma U.3

and lemma II.4(i).

The last term, SfjG_G <  {SfjSG_G) l/2 op (1) Op by  lemma n.3 and

lemma n.4(iii).

Combine all four terms, I get SV-rF.c-c =  op (n_1/2) by assumption n.3.
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Proof of (iii): Using equation (2.29), I have

^W'—W',u ~  T̂i+v+(m—m) —u—t},u ~  Sij+t>,u "F Sm—m,u t̂/,u (2.33)

The first term, Sv+v,q <  (Sv+vSo) l / ‘2 =  Op {^/K/y/n^j by lemma II.4(ii).

The second term, <  (5m_^S s ) 1/2 =  Op ( £ ? =1 fcf*) Op {y /K /y /n )  by

lemma II.3 and lemma II.4(ii).

The third term, So,a <  (SoSo) l /2 =  Op (K/n)  by lemma II.4(i) and lemma II.4(ii).

The last term, Sr},o <  (SfjSa) l /2 =  Op (K/n)  by lemma H.4(ii) and lemma IL4(iii).

Combine all four terms, I get Svv-vV.u =  op (n~l/2) by assumption 11.3-

Proof of (iv): Using equation (2.29), I have

W\u =  y/ftSij+v+(m—m)—B—rj,u

) (2.34)

The first term, y/nSn+v,u =  v ' n j y  (r/t- +  i/f) u£ =  \fnYJi=\£iui X  (0,0)  in 

distribution by the central limit theorem.

The second term, E Z] =  -jptr ((m — m) (m — m)' E \uv!\X, Zj) <

£ £r((m  —m /(m  —m) fn ) =  ~Sm-m — °p(n~l) by lemma II.3. Hence, Sm- A,u =  

op (n~l/2).

The third term, E  [SgJX , Z] =  4Ttr  (P  (P'P)~l P'vv'P (P'P)~l P>E [uuf\X, Z\) <  

%tr ( P ( F P ) ~ l P W P  (P,P ) - l P>) =  S tr ivv ' /n ) =  =  op (n~l) by lemma

II.4(i). Hence, So,u =  °p (n~1/2).

The last term, similar to the proof of So,u but instead use lemma 4(iii). Hence

Sfj,u =  op (n~l/2) .

Combine the proof of (i), (ii), (iii) and (iv) with (2.30), I can conclude that 

y/n (7  — 7 ) —1► N  (0 , 4>- I fM>-1) in distribution.
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For the second part of the proof, I need to  show that £  =  E +  op (1), where

£  =  *. Since =  5 lK_v̂ , so by the proof in theorem II.l, 4» =  4> -F op (1 ).

By the proof of the first part of theorem II.l, I have 7  =  7 + O p (n-l/2); and from 

the proof of theorem H.2 next, I will have <7, =  gi+op (1). Hence, u,- =  Yi — W f i —gi =  

(Yi — W/ 7  — gi) +  op (1) =  iii +  op (1). By the lemma II.3, lemma II.4(i) and lemma 

II.4(iii), I have m,- — mt- =  op (1), u,- =  op (1) and rji =  op (1). Using equation (2.29), I 

have

Cl +  op (1) by the law of large numbers. ■

Proof of theorem n.2. The proof of this theorem is similar to the proof of 

Theorem 1 in Newey(1997). First find the convergence rate of 1 „ ||d — a ||, by (2.10) 

and (2.6), I get

The remaining of the proof is to show that Cl =  Q +  op (1).

Wi -  Wi =  % + Vi + (mi -  fhi) — Vi — rji =  £,• +  op (1) (2.35)

Therefore, Cl

a  =  (P'P)~l P* (Y -  W7 )

=  (P'P)~l P ' ( Y -  W'y - W ( 7  -  7 ))

=  (P'P)~l P' (Pa +  (G -  Pa) +  u -  W  (7  -  7 ))

=  a  +  (P'P/n) " l P1 (G -  Pa) /n  +  (PlP/n)~l P'u/n

-  (P'P/n ) - 1 P'W  (7  -  7 ) / n (2.36)

Hence,

1„ | |d - a [ |  <  l n \\(P,P / n ) - l P ' ( G - P a ) / n \ \  

^rln \(P 'Pfn ) - 1 P'ufn^

+ l n ||(P'P/n ) - 1 P 'W  (7  -  7 ) fn (2.37)
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The first term, 1„ || (P'P/n) 1F  (G — P a ) /n || — Op kL Sl j  by lemma II.2. 

The second term, E  [l„ || (P 'P /n ) -1  P 'n /n || |X, Z]

=  1 nE  [((n 'P /n) (P 'P /n ) -1  (P 'P /n ) -1  (P 'n /n ) ) 1/2 |X, Z

<  Op (1) l ntr  (P  (P 'P ) -1  F E  [un'\X, Z\ / n ) 1/2 <  Op (1) 1 nC\fK(y /K  by lemma

11.1 and assumption II.l. Hence, 1„ ||(P 'P /n ) -1  P 'u /n || =  Op ^ x /^ /v /n j.

The last term, note that W =  T] -\- v +  m — e +  m and 7  — 7  =  Op (n_l//2) by 

theorem II.l, so

E [l„ ||(P 'P /n ) -1  PW /nH |X, Z] =  1 „P  [\\(FP/n)~l F ( e  +  m) /n || |X, Z]

<  1 nE  [ ||(P 'P /n ) -1  P 'e /n || |X, Z] +  l nP  [|\ (FP/n)~l Fm/n\\ \X, Z].

Since, l nP  [ ||(P 'P /n )-1  Fe/n\\ \X, Z]

=  1 nE  [|\(e'P/n) (P 'P /n ) -1  (P 'P /n ) -1 (P 'e /n )|| |X ,Z]

<  Op (1) l„ t r  (P  (P 'P ) -1  P 'P  [srs'lX, Z] / n ) 1/2 <  Op (1) U C y / K / ^  by lemma

11.1 and the proof in theorem H.l, hence, 1„ ||(P 'P /n ) -1  P 'e /n || =  Op =  

op ( 1).

And, l n ||(P 'P ) -1 P 'm || =  1„ ||am|| =  l n ||dm -  a m -Fam||

<  l n ||dm -  amW +  1„ ||a m|| =  Op ( Z f =l fcf*') +  Op (1) =  op (n“ 1/2) +  Op (1) =  

Op (1), by lemma n.2.

Combine all the terms, I have

1„ ||d -  a|l =  Op ^  krSl +  y / K / V ^ j  (2.38)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

26

To prove part (i), using (2.38) and assumption n.3, I have

sup \g (x, z) -  g (x, z)\
(*^)es

<  sup I pK (x, z)' (a  -  a) | +  \pK (x , z)' a -  g (x , z) |
(x^)es

<  0 , ( J O | | d - a | | + O ^ * r ^

=  Op fco ( K )

Since the proof of (ii) are similar to the proof of (iii), so I will prove only part 

(iii). Using (2.38) and assumption H.3,1 have

J  ( 9  (*, s ) - g  (x, z ) f  dF (x, z)

=  J  (PK (* ,- ) ' (d -  a) -h pK (x, z)' a -  g (x, z ) ) 1 dF  (x, z)

< || a  -  a | |2 +  J  (pK (x, z ) ' a - g  (x, s))2 dF (x, z)

U ' / n  +  ' p k r ^  + O p

=  Op U / n  +  J 2 l c - A

m

The followings are the proofs of the lemmas that are used in the proofs of the theo

rems. Following the arguments in Newey (1997), I can assume without loss of general

ity that B =  I, hence P K (X , Z) =  pK (X , Z), andQ =  E  [pK (Xf) Zf) pK (Xi, Zi)'] =  

/ ,  see Newey (1997) for the reasons and more discussions on these issues. Re

call that (X , Z) is a  K  x  1 matrix, rewrite each component of this matrix as

PK (X, Z) =  (plK (X, Z ) , . . . ,  pKK (X, Z))'.

=  Op

L em m a H .1  | |q  -  / | |  =  Op (Co (X) y /K/y /n j  =  op (1), where Q =  P'P/n.
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Proof. This is the proof of Theorem 1 in Newey (1997). The proof is copied here 

for the reference.

Q - i

Hence,

PkK (Xi, Zi) pjK (Xi, Zi) /n  —
K  K

=  £ £ *
f c = i  j = i

K K
< [PkK Pi* (X » Z *)1  / n

k=l j=1 
K

=  E
K

] [ > . *  (Xi, Z i f Y . m  (Xi, Z if
_fc=i j=i

<  Co (K)2 tr (I) jn

<  Co (K)2 K/ n  —+ 0

/n

Q - i — Op (Co (X) s fKf  \fn^ =  op (1)

Let l n be an indicator function which has value 1 if P'P  is invertible and 0 

otherwise. Note that by Lemma II. 1, P ( l„  =  1) —► 1 .

Lem m a I I .2  ||d / —q /|| =  0 P where a f  =  (F P )~ l F f ,  a f  satisfies

assumption II.‘3, f  =  G or f  — m.

Proof. By lemma II.l, assumption II.3 and the fact that P  (P'P ) ' 1 F  is idem- 

potent,

1., 115,-0,11 =  l n | | ( P 'P ) - 'P ' ( / - P a / )|

=  1„ ||( /  -  Pa , ) ’P  ( P P ) ~ l Q P  ( f  -  P a , )  fn \ ^

<  U O , (1) ||(J -  Pa,) '  P ( P P ) - l P ( J - P a , )  / n | ‘/2

<  Or (1) || ( /  -  Pa,) '  ( /  -  P a , )  / „ | | 1/2 =  Op ( J 2  k3 ‘j
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Since, P  (1„ =  1) -»  1 , ||dy -  a f \\ =  Op (X)?=i kt ^ . ■

L em m a II.3  Sf_ j  =  Op , where f  =  G or f  =  m.

Proof. Note that /  =  P d /, by assumption II.3, lemma II.l and lemma II.2,

s!-i  =  1 1 | /  -  / f  <  i  ( 1 1 /  -  P^rt +  I I / > ( “ /  -  f i / ) l l ! )

-  °  ( e  * t *  ! + ( “/ -  “ /)' ( " / » )  («/ -

^  0  ( e  *<"*) +  o ,  a )  I K  -  a /ii2 = o r ( £  *,-»

■

L em m a H .4  (i) Sz =  Op (K /n ), (ii) Sz =  Op (K / n ) and (iii) Sp =  Op (K / n ).

Proof, (i) This proof is similar to the proof of Theorem 1 of Newey (1997),

E[Sz\X ,Z\  =  [u'P(P'P ) - 1 P v lX ,  z j

=  i E \tr ( p  (P 'P ) -1  P 'P  [m/|X, Z])j 

<  ^ t r ( p ( P ’P)~l P ' ) = C ( K / n )

Hence, Sz =  Op (K/n).

(ii) Follow the same proof as in the proof of iemma II.4(i).

(iii) Note that since P  [9 (X, Z) 6 (X, Z)'] <  oo, 0(x,z) =  m(x ,z )  -f- q (x, z), 

m E Q and tj JLQ, these imply that P  [rfrf\X, Z] <  oo. So I can also apply the proof 

of lemma H-4(i) to this case and get the same result. ■
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CHAPTER IH

THE RELATIONSHIP BETWEEN MONEY GROWTH AND INFLATION IN

THE UNITED STATES

A. Introduction

One of the central propositions in economics is that there is a relationship between the 

inflation rate and the growth rate of the money supply. This relationship has been the 

basis of a number of policies that have been proposed for the US economy, including 

the use of money growth as an indicator variable for inflation. 1 Friedman (1988) 

summarized the evidence on the use of money growth as an indicator variable for 

inflation, and concluded that there is no stable empirical relationship between the two 

variables. Friedman and Kuttner (1992) presented extensive evidence confirming that 

conclusion.2 Svensson and Woodford (2002) have summarized the existing empirical 

literature, “Under normal circumstances, the information content of money growth 

for inflation forecasts in the short and medium term seems to be quite low. Only in 

the long run does a high correlation between money growth and inflation result.” 

This chapter asks whether the dismissal of money growth as an indicator for 

inflation is warranted. Specifically, empirical research has focused on forecasts made 

using vector autoregressive (VAR) models:

X t =<x + P{L)Xt- X+ e t (3 .1)

LSee, among many others, Bernanke and Mishkin (1997), Rudebusch and Svensson 
(1999) and Svensson and Woodford (2002) for discussion of policies m a k in g  use of 
indicator variables. Money growth targeting is another example of using the relation
ship between money growth and inflation in a policy rule. See e.g. Friedman (1988) 
and Friedman and Kuttner (1996) for further discussion.

2See e.g. Cecchetti (1995), Friedman and Kuttner (1 9 9 6 ), Estrella and Mishkin 
(1997) and Stock and Watson (1999) for additional evidence that money growth does 
not have marginal predictive content for inflation.
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where X t =  (7rt, Zt)', 7rt is the inflation rate at time t, and zt is either the growth rate 

of a  monetary aggregate or a “price gap” measure such as velocity (see e.g. Hall

man, Porter and Small (1991) and Gerlach and Svensson (2001)). The popularity of 

VAR modeling arises from the fact that it is an atheoretical approach, requiring very 

few assumptions. Based on the Wold Decomposition Theorem, most time series can 

be assumed to have a representation that can be approximated as an autoregressive 

process (see e.g. Sargent (1987)). If the goal is to produce out-of-sample forecasts, 

however, VAR models may not be the best choice because they are often overpara

metrized. If the system of interest is nonlinear, there may be gains from using a 

nonlinear forecasting model rather than a linear approximation.

This chapter allows for potentially complicated nonlinearities in the relationship 

between money growth and inflation. The approach is to ask whether a nonparametric 

model, that includes money growth, forecasts inflation better out-of-sample than an 

autoregressive model of inflation. In principle, a  nonparametric approach should be 

preferred to parametric approaches, because it is more general. As few other macro- 

economic papers have attempted to exploit the gains from nonparametric modeling3, 

it is worth discussing some reasons why this may be so. First, the curse of dimension

ality requires that only very parsimonious models be considered. The computational 

burden of implementing a nonparametric approach is non-trivial, requiring infeasible 

amounts of computing time for models with more than four or five independent vari

ables. On the other hand, it is possible to estimate even the most complicated linear 

models in just a  few seconds. A second disadvantage is tha t nonparametric models 

are less efficient when the data generating process can be approximated well with a  

linear model. The assumption of linearity is prevalent in empirical macroeconomics,

3See e.g. Diebold and Nason (1990).
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presumably because of a lack of evidence to the contrary.4 Evidence that a nonpara

metric inflation forecasting model outperforms an autoregressive model provides a 

strong case for policymakers to place weight on money growth when setting policy.

This chapter proceeds as follows. Section B describes the data. Section C dis

cusses the findings on the information content of monetary aggregates and velocity for 

inflation. Section D is the conclusion. Finally, section E discusses the computational 

details.

B. Data

This section describes the variables that are used in the empirical analysis. All of the 

data series run from January 1959 to June 2002 , and were downloaded from the St. 

Louis Federal Reserve website.0 The monetary aggregate data are simple sum M2, 

and M3, and corresponding M2, and M3 Divisia monetary services index data (see 

e.g. Belongia and Chalfant (1989), Belongia (1996) and the collection of papers in 

Barnett and Serletis (2000) for discussion and empirical evidence on the advantages 

and disadvantages of using Divisia monetary aggregates).

The velocity data are computed as V =  PQfM,  where P  is the seasonally ad

justed consumer price index for all urban consumers, Q is the index of total industrial 

production, and M  is one of the monetary aggregates. The consumer price index and 

industrial production series are used in place of other possible measures of the price 

level and output, because these variables are available a t a  monthly frequency. Use of 

data available a t a  quarterly frequency would prohibit the use of nonparametric meth

ods, as the sample size would be too small to allow for an informative post-sample

4For exceptions, see Michael, Nobay and Peel (1997), Taylor (2001) and Hamilton 
(2001).

5http://www.research.stlouisfed.org/fred/
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analysis.

C. Results

1. Parametric Forecasting Models

For the parametric model analysis, I use the SIC to choose the number of lags in the 

AR model, and calculate out-of-sample mean squared prediction error (MSPE) for 

this model (for 100 forecasts). Then I need to use the SIC to choose the number of 

lags in the bivariate VAR model of inflation and money growth, and make forecasts 

using that model.

All the forecasting relative MSPE reported in this chapter are relative to the 

MSPE of a simple linear AR(2) model given below (SIC selects 2 lags):

fit =  Q!q -F ai7Tt_s -f- aoTTf-s-i ■+* titi (3-2)

where s =  1,6,12,24.

The data is from January 1959 to June 2002. I make one-step-ahead forecasting 

for the last 100 periods. Let 7rt denote the one-step-ahead forecasted value of nt 

(t =  1, . . . , 100 , corresponds to the last 100 periods), the MSPE is computed as 

TUo — 7rt)2- Based on model (3.2), the 1,6,12 and 24 month ahead forcasting

MSPEs are: 3.52, 3.69, 4.12 and 4.48, respectively. Thus based on an AR(2) model, 

the longer the forecasting horizon, the worse the forecasting.

Applying SIC to the VAR model also picks 2-lag, therefore, the VAR model for 

inflation is as follows:

fit =  Qo +- C*l7rt_ 3 ■+• tt‘27rt-s-L +  -f- OL\Zt-s-.]_ +  Mt- (3-3)

The relative forecasting MSPE of the parametric linear VAR models are the ratio
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of MSPEs of the VAR models to MSPEs of the simple AR(2) model of (3.2). The 

results are given in Table III below.

Table III. Relative MSPE of Linear Models

Horizon M2 M3 M2D M3D V2 V3 V2D V3D

1 Month .99 .99 1.00 1.01 1.09 1.11 1.01 1.00

6  Months 1.02 1.10 .98 1.03 .93 1.05 .90 .90

12 Months .93 1.04 .97 1.01 .85 .85 .84 .83

24 Months .79 1.06 .89 .96 .71 .67 .63 .62

From Table III one observes that, for 1-month-ahead forecasting, out of 8 different 

money and velocity measures used, only M2 and V3D have slightly smaller forecasting 

errors than the simple AR model. Moreover, compared with the simple AR(2) model, 

the best parametric models with money or velocity (M2 and M3) have no more 

than 1% reduction in MSPE. This clearly shows that, in a  linear regression model 

framework, adding money or velocity as additional regressors do not help forecasting 

1-month-ahead inflation. For 6-month-ahead forecasting, half of the models with 

money or velocity preform better than the AR(2) model. For the longer horizon 

of 12-month-ahead and 24-month-ahead forecastings, 6  of 8 models with money or 

velocity give smaller MSPE than the AR(2) model. Therefore, the estimation results 

based on the linear models suggest that money may help forecasting inflation only 

in the long run (1  year or more), but it does not help forecasting inflation in the 

short-term (1  or 6  months).

The above results are consistent with the previous literature that various eco

nomic indicators may help predicting inflation only in the long run. There is a strong

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

34

correlation between inflation and money growth in the long run but not in the short 

run (Cecchetti(1995)). I also find that when the horizon is longer, the R-squared 

is smaller. This result shows that there is no relationship between the r a n k in g  of 

in-sample goodness-of-fit and the ranking of out-of-sample forecasting, this reinforces 

the finding of Cecchetti (1995).

2. Nonlinearity in the Money Growth-Inflation Relationship

In this subsection I use a nonparametric approach to model the relationship between 

inflation and money growth rate. I compute the relative MSPE from the nonparamet

ric model to the simple linear AR(2) model. Comparison of the linear AR(2) model 

MSPEs to the fully nonparametric model MSPEs. The linear AR(2) model is given 

in (3.2). The nonparametric model has the following form (s =  1,6,12,24):

Tit =  <7(7T£_s, 7Tf—a—I, Zt- d) +  lit, (3*4)

where g(.) has an unknown functional form, zt =  mt or zt =  ut, where mt =

ln(Mt/M t- 1), vt =  PtQt/Mt, Mt can be any one of the four monetary measures: 

M 2 t, M3t, M2 A ,  and M3Dt.b

Table IV reports the relative MSPE of the nonparametric estimation results to 

those of the simple linear AR(2) model.

From Table IV one observes that for the short-run 1-month and 6-month ahead 

forecasting, the nonparametric models give much smaller MSPEs than the simple 

linear AR(2) model for all cases. First note that, compared with the linear AR(2) 

model, the nonparametric AR(2) model has 13% and 11% reductions in MSPEs for

6I have also estimated a nonparametric model with two lags in zt. The MSPE
results are similar to that of model (3.4) with only one lag in zt. These results are
not reported here to save space.
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Table IV. Relative MSPE of Nonparametric Regression Models

Horizon AR M2 M3 M2D M3D V2 V3 V2D V3D

1 Month .87 .80 .84 .86 .86 .74 .83 .74 .73

6  Months .89 .85 .89 .86 .89 .74 .81 .72 .71

12 Months .90 .80 .89 .88 .89 .62 .69 .61 .61

24 Months 1.06 .71 1.04 .93 .98 .58 .69 .58 .57

one-month and six-month ahead forecastings, respectively. Secondly note that all the 

models with money or velocity perform better than the nonparametric AR(2) model. 

The best performers are V2, V2D and V3D, the MSPE reduction, compared with the 

nonparametric AR(2) model, is around 15% for 1-month-ahead forecasting, and 20% 

for 6-month-ahead forecasting. Hence, even for the 1-month or 6-month short-run, 

using money or velocity help improve forecasting inflation.

For the 12 and 24 months ahead forecasting, all the models with money or veloc

ity perform better than the nonparametric AR(2) model. Thus, the nonparametric 

estimation result shows that using money or velocity can improve forecasting infla

tion even in the short-run. This suggests that money and velocity affect inflation 

in a nonlinear way, and the misspecified linear models fail to detect the correlation 

between money (velocity) and inflation.

3. Identifying the Source of the Nonlinearity

In this subsection I try  to identify the source of nonlinearity. I try  a parametric 

model allowing nonlinear interaction terms as well as two semiparametric models to 

see whether the nonlinear effect of money on inflation can be summarized in a simple
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way.

a. Linear interaction model

First I consider a linear model with interactions (s =  1,6,12,24):

TTt =  £*0 +  a i7 T t_ a +  1 +  a 3 ~ t - s  +  a 4 ^ t - 3 ^ t —s  +  O l s i t t - s —l z t —s  +  +  U{.

(3-5)

The out-of-sample MSPE based on model (3.5) is given in Table V. Comparing 

the result of Table V to that of Table IV, one observes that the relative MSPE of the 

parametric model (3.5) is larger than those based on the nonparametric model (3.4). 

This suggests th a t the simple quadratic interaction terms do not catch the nonlinear 

money effect on inflation.

Table V. Relative MSPE of Parametric Linear Models with Interactions

Horizon AR M2 M3 M2D M3D V2 V3 V2D V3D

1 Month .90 .95 .89 .93 .92 1.00 .96 .89 .89

6  Months .98 1.04 1.08 .99 1.00 .89 1.03 .86 .84

12 Months .99 1.01 1.06 .98 1.00 .68 .99 .68 .66

24 Months 1.03 .83 1.08 .96 .99 .65 .69 .75 .70

b. Partially linear model

Next, I consider a  semiparametric partially linear model as follows (s =  1,6,12,24).

T?t ~  +  Ut, (3-6)
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where g(.) is of unknown functional form. Although the partially linear model allows 

nonlinearity in Zt~a because g(.) has flexible functional form. It does not allow non- 

linearity in irt-s and 7rt_s_i, nor does it allow interaction among zt- a, nt-s and 7rt_s_i. 

The relative MSPE (relative to a linear AR(2) model) for the partially linear model 

is given in Table VI below.

Table VI. Relative MSPE of Partially Linear Regression Models

Horizon M2 M3 M2D M3D V2 V3 V2D V3D

1 Month .99 1.01 1.00 .99 .96 .98 .90 .91

6  Months .96 1.02 .95 .97 .86 .91 .80 .81

12 Months .94 1.01 .98 .99 .82 .83 .72 .74

24 Months .71 .94 .87 .92 .65 .72 .60 .60

From Table VT one observes that the performance of a  partially linear model is 

similar to that of the parametric model (3.5) with interactions. Its MSPEs are in 

general larger than those from the nonparametric model (3.4).

c. Smooth coefficient model

Finally I consider a more general semiparametric model: the smooth coefficient model 

which is given by (s =  1 ,6 ,12,24)

TTt =  /3o(St_s) "1“ /?l(~t—s)7Tt—s "F /̂ j(̂ t—a)7Tt—s—1 "T* Uti (3*7)

where the functional form of /?o(-), /31(.) and are not specified. Note that the 

smooth coefficient model (3.7) contains the partially linear model as a special case. 

When fii(z) and ^ ( 2) are constant functions, the smooth coefficient model reduces
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to a  partially linear model.

The relative MSPE of the smooth coefficient model is given in Table VII. From 

Table VII one sees that the smooth coefficient model performs much better than the 

simple linear AR(2) model. It also performs much better than both the parametric 

model with interactions, and the partially linear model. In fact there are a few 

cases where the smooth coefficient model even out-perform the nonparametric model. 

Compared with the nonparametric model (3.4), the smooth coefficient model has 

the advantage that it only contains a univariate nonparametric component. Thus, it 

does not suffer from the ‘curse of dimensionality’ problem. The smooth coefficient 

model suggests that the money growth rate affects inflation nonlinerly and that the 

interaction between lagged inflation and lagged money growth rate are important 

determinants of future inflation.

Table VII. Relative MSPE of Smooth Coefficient Models

Horizon M2 M3 M2D M3D V2 V3 V2D V3D

1 Month 1.00 .99 .86 1.00 1.00 1.00 .75 .73

6 Months .96 .98 .81 .89 .94 .94 .76 .77

12 Months .93 1.00 .67 .79 .97 .99 .60 .59

24 Months .71 .90 .60 .67 .88 .92 .60 .58

D. Conclusion

This chapter has made several notable contributions. By not relying on the straight- 

jacket of a linear VAR forecasting model, I show strong and robust evidence that 

money growth has been useful as an indicator of future inflation in the US. The
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finding of a  strong and sufficiently stable relationship between money growth and 

inflation is the opposite of that found in most recent work. In particular, there is a 

near consensus that the only relationship between money growth and inflation is at 

long horizons. I have presented evidence that money growth has marginal predictive 

content for inflation a t horizons as short as one month. More generally, the results 

indicate that nonparametric methods might be useful for the monetary policy process. 

Nonlinearities in the relationships of interest to central bankers appear to be strong. 

When modeling inflation, the benefits of relaxing the assumptions on functional form 

substantially outweigh any disadvantages of nonparametric estimation.

E. Computational Details

Discussion of how each of the nonparametric models was estimated is written for 

someone who is familiar with all of the technical details of nonparametric estimation.

The general nonparametric models are estimated by using the Nadaraya-Watson 

kernel type estimator. The bandwidth is choosen by the least squares cross-validation 

method.

The patially linear model is estimated by using the method purposed by Robin

son (1988). First I estimated the parameters in the model by regressing itt — 

on7rt_s—E(nt-.a\zt-i) and 7rf_a_i_ —£’(7r£_s_l |ct_1) where the is the estimated

conditional expectation given Zt-1. The bandwidth of the estimated conditional ex

pectation is chosen from the values of C  in the plug-in rule that minimizes the leave- 

one-out sum of squared errors. The nonparametric part can be estimated again using 

the kernel method by smoothing 7rt — d i7rt_s — d o ^-a-! over zf_i. The bandwidth 

is chosen by the plug-in rule and by choosing the difiemt values of C  around 1 that 

gives the smallest MSPE. The MSPE is calculated by M S P E  =  ^  — ̂ t)2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

40

where 7rt =  at\irt-a +  is the prediction using the data from the first

period to period t  — 1.

The smooth coefficient model is estimated by the method of Li et al. (2002). The 

bandwidth is chosen from the plug-in rule with different values of C  around 1 that 

gives the smallest MSPE. The MSPE is calculated by M S P E  =  $ t̂i=42o(7rt — tt*)2

where 7rt =  p0(zt_s) -(- ^x{zt-a)Kt- S +  /32(-2t_3)7rt_3_ l is the prediction using the data 

from the first period to period t — 1.
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CHAPTER IV

OPTIMAL SMOOTHING OF THE PARTIALLY LINEAR MODEL

A. Introduction

Over the last few decades, the semiparametric methods have been proposed and 

widely used in many real world applications. Both econometricians and statisticians 

have developed the theory specifically for the semiparametric model. One of the 

most popular model is the Robinson’s (1988) semiparametric partially linear model. 

Robinson (1988) has shown that the parametric estimates are ^/ri-consistent and 

asymptotically normally distributed with finite asymptotic variance. Li (1996) has 

purposed an alternative proof of Robinson’s (1988) result and obtains a faster con

vergence rate for some of the average nonparametric kernel estimators, and relaxed 

some regularity conditions proposed by Robinson (1988). However, both of these lit

eratures assume that the bandwidth h is prespecified or simply given by some ad-hoc 

method.

It is well known that the bandwidth is of crucial importance in nonparamet

ric and semiparametric estimations. The optimal bandwidth is needed to obtain a 

good estimate. Many data-driven bandwidth methods have been proposed and the 

commonly used ones are the cross-validation (CV) method and generalized cross- 

validation (GCV) method. H&rdle, Hall and Marron (1988) defined the theoretically 

optimal bandwidth and show that the bandwidth obtained by the cross-validation 

method converges in probability to the theoretically optimal value. This result has 

been used in many nonparametric and semiparametric literatures. Hardle, Hall and 

Ichimura (1993) used this result to show that the cross-validation bandwidth con

verges in probability uniformly over some shrinking compact sets to the theoretically
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optimal value in the single-index model setting.

This chapter will consider the convergence behavior of the cross-validation band

width under the semiparametric partially linear model setting. I propose that the 

finite dimensional parameter estimates and the cross-validation bandwidth can be 

obtained simultaneously by minimizing a sum of squared errors. This means the 

bandwidth need not be prespecified. I will show that the parameter estimates are 

still v/n-consistent and asymptotically normally distributed and the cross-validation 

bandwidth estimates also converge in probability uniformly over some shrinking com

pact sets to the theoretically optimal bandwidth. The chapter is organized as follows: 

section B presents the idea and the methodology of how to obtain the estimators, 

section C gives the conclusion and the last section is dedicated to the proof of the 

main theorem.

B. Methodology

Consider Robinson’s (1988) semiparametric partially linear model:

Yi =  X[(3q +  0(Zi) +  Ui i =  1> —, n (4-1)

where Vi is a  scalar value dependent random variable, Z,- is a p x 1 vector of random 

variables, X, is a  dx  1 vector of random variables, po is a  d x 1 vector of parameters, 9 is 

an unknown scalar value function of Z  and {ut-}£=i are the independent and identically 

distributed (i.i.d.) random variables with E\ui\Xu Zi\ =  0 and E[uf\Xi, Zi] =  a2 <  

oo. For A — Y  ox X ,  define

<4-2)

which is the leave-one-out nonparametric estimate of conditional expectation where h
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is a  bandwidth, AT is a  fixed kernel function and f ( Z i )  =  (n h p) ~ l $^”= l K  ( ( Z { — Z j ) / h )  

is the nonparametric density estimation of Z  at Zx-. Also define At- =  A* — A*. The 

objective is to show that the bandwidth obtained from the next minimization problem 

converges in probability and does so uniformly over some shrinking compact sets to 

the theoretically optimal value. So I consider the following minimization problem:

[h ,  P )  =  a rg m in - -  X \ P ) 2 (4.3)
(W) n *-(

The first order condition with respect to p  in matrix notation is

p h =  { X ' X ) - l X ' Y  (4.4)

Substitute (4.4) to (4.3) gives

h  =  arg m in - Y ( Y i  -  X [ p h) 2 . (4.5)
n t r

First I will decompose the objective function to

1 n
— Y X Y j - X ' A ) 2 — T { h ) + R \ { h ) - \ - R - z ( h )  + R 3 ( h ) -f terms do not depend on h  (4.6)
n «=i

Then I will show that the uniform convergence rate of R \ { h ) ,  R-z{h)  and R 3 ( h )  

is smaller than the uniform convergence rate of T ( h ). So minimizing the objective 

function will lead to minimizing T ( h ) .  The theoretically optimal value of h  is defined 

to be the value h 0 that minimizes the mean squared error, i.e.,

h0 =  argmin E { Y  — X ' P o )'2 (4.7)
h

Hardle, Hall and Marron (1988) have shown that h  =  h 0 +  op(n_1^ 4+p)), where 

h  is the minimizer of T ( h ) .  Therefore, under the following assumptions, I can state 

the main theorem.
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A ssum ption IV .l (Y|, Xi, Zi)"=l are independent and identically distributed as (Y, X , Z) 

and Z , the support of Z, is a compact subset o fW .

Assum ption IV.2 The density function f  is bounded away from zero, i.e., f (z)  >  

b >  0 for all z € Z.

A ssum ption IV.3 The kernel function is of second order with compact support, 

symmetric around zero, integrate to one and Lipschitz continuous, i.e., there exists a 

constant D >  0 such that |K(x) — K(y)  | <  D\x — y| for all x , y in the support of the 

kernel function.

A ssum ption IV.4 (i) The functions 4>{z) =  E[Y\Z =  z\, £(z) — E[X\Z =  z) and 

6 (z) have two bounded, continuous derivatives on Z: (ii) the matrix =  E[{X  — 

E[X\Z)}{X — E[X\Z]}'] is positive definite.

A ssiunption IV.5 (i) U is independent o fX  and Z . For all i < n, E[ui\Xi, Zi\ — 0, 

E[uj\Xi,Zi] =  a2 < oo, furthermore, E\ui\l, E\Xi\l, E\£(Zi)\l and E\9(Zl)\t are all 

finite for all I EN.

The assumptions IV.l and IV.4 are the standard assumptions in the semipara

metric and nonparametric literature. That the density function is bounded away from 

zero in assiunption IV.2 can be relaxed and use the truncation technique in the proofs. 

Assumption IV.3 is the standard assumption but note that for higher dimension p >  5 

the higher order kernel function is needed to be used to obtain v^n-consistency of 0 h- 

The boundedness of all moments in assiunption IV.5 can be relaxed to be bounded 

for some sufficiently large moments.

Now I can state the main theorem.

Theorem  I V .l  Under assumption IV.1-IV.5, define a compact set 

Ttn =  [cn-1/(4+p), cn~1/(4+p)]. For any £ >  0 and p < 5 ,
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(i) suph&in T(h) =<x2 +  op(n -4̂ 4+p)+c)

(it) suphsHn \R2(h)\ =  op(n-(8+p)/(4+p)+c)

(in) supheWn |ife(fc)| =  Op(n-(12+p)/(8+2p>+c)

Proof. The proof will be given in the last section. ■

The theorem shows that the uniform convergence rate of T(h) is slower than all 

other remaining terms, therefore, minimizing T(h) will give h such that h/hQ —► 1 in 

probability by the result of H&rdle, Hall and Marron (1988). Since for a  fixed h, Robin

son (1988) and Li(1996) showed that y/n0h — /3o) —» N(0, a 2<&-1) in distribution, and 

since h/ho —* 1 in probability; hence one can show shat \/n{fi-h — po) —* iV(0,cr2$ -1) 

in distribution.

C. Conclusion

In this chapter the uniform convergence rate of the cross-validation bandwidth is 

proved. I propose that, to get the parametric estimates, the bandwidth need not 

be prespecified; and the parameter estimates and the cross-validation bandwidth can 

be obtained simultaneously by minimizing a sum of squared errors. I show that the 

parameter estimates are still ^/n-consistent and asymptotically normally distributed 

and the cross-validation bandwidth estimates also converge in probability not only 

pointwise but also uniformly over some shrinking compact sets to the theoretically 

optimal bandwidth. This result is stronger than the pointwise convergence in Li 

(1996) and Robinson (1988). However, the boundednesses of higher moments of all 

the functions in the model are needed to obtain the uniform convergence property.
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D. Proofs

Defind the short notation B<- =  B(z i) iB =  (Bu #2, - - - Bn)',

Kij =  Kijh =  K((Zi  — Zj)/h).  Since I am interested in the rate of convergence, I 

will write only the leading term, e.g., for n(n — 1) I will write nr for short, and the 

smaller order term will be abbreviated as (s.o.). Define C  with any subscripts to be 

the generic constants which may be different at different places. Also let

(4-8>
i

for any vector A, and J3,and S,\ =  Since,

r H i r )  (4-9)
by using (4.8) and (4.9), one can show that

i  E ( Y ,  -  m *  =  ±  £ ( *  -  ^  i  -  7 ? )
j= l i= l  -' t :=1 \ / i  1 J

=  A(h) +  Rl (h) (4.10)

since |f?1(/i)| has a smaller order than A(h) by the uniform convergence of the non

parametric density estimation. Hence,

^ i=l Ji

=  ^  E l *  -  i w i  +  i  E ( A  -  M X i X l i h  -  f t )  A
(=1 Ji i=l Ji

i= l  •»*

=  T{ti) +  f?2(/i) — 2R {̂Ji) (4.11)
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For a  fix value of h, I will show the pointwise convergence as follows:

P ro p o sitio n  IV .l  T(h) =  a2 +  Op(h4 +  ^  +  h6 +  +  ~ ^ )  +  op(l)

Proof.

n v  = \  E w - w |  - z  i>  - »<+“■ - *i2|l
i= L  Ji j = l  •'*

— S{0- 6)f(f +  5u/// +  5u /// 2 Suf/f,,lf/f +  2S(0- 0)f/f,uf/f -  2S(e-0)f/f,uf/f

(4.12)

Now showing the rate of each term, and by assiunption IV.l to IV.5,

E [S(0-e)f/f\ =  ^[(6 , -  ex) h / h \ l  =  E  

„ C
~ ri-fi-P 

=  I I  +  L'2

a-
Lj'#i

k E w - w .

C

nhPfi

+
n 2/i-P E E  (0t -  -  9k)K\jKik

j#i j¥M

One can show that

C/r
Li — nhp -t* (s.o.) and Zcj — C\h^ -(- Coh? -f- (s.o.)

So,
h2 hA

\e - 0) f / f - O P{h +  —  +  h + — ) (4.13)
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Next, by using the law of large numbers,

* . / / / — £ < « / / ? =

=  (a2  +- op(l)) ^1 -f- Op ^hA -f +  Op '̂h“ 

=  <t2 + o p(1)

Next,

Hence,

Next,

vnhP J  )

£ & / / / ]  =  E nhPfi j* 1

+  5 m  uiukKijKlk 
-j#i j¥1

Sa // /  ° p( +  nftp)

(4.14)

(4.15)
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E ^if/f,uf/f\ =  +  E[uiU2UlU2f l f ^ / ( / i / i ) 2]

f l / f l

riihip~

n3h2pE  | ui ^ u7^"r./f//i2|  +  n2fl2pE \^ lu2E i z h h f ( / 1/ 2)] 

Co-4 . , 2* . C<7< _  1 H1

Hence,

Next,

<  C  I 2 I Ts  \ f 2 i f 2 \  
n3hip

+  ^ * E  “ i“a I y i u i K u  I I X  ujK-ij I h h K f i h )

=  - £ - 0 ( 1  +- h2) +  % ~ 0 {l +  H1) =  0 ( - l _  +  * - )
n W  nJ/iP ' ^n2hP n2hp

Suf/f,uf/f -  ° p ( ^ 7 2  +  ^ 7 2  ) (4-16)

E iS(0-9)f/f,uf/f\ -  n 2 E

* ¥ ■ E n1

e » - aj* 4
£ Jt

£ «  -  w 2^ +  (s-o.)

=  —  0(/»4 + A « +  -*£- +  -£!-) 
n n/iP n/iP

Hence,
Kl h?

\0—8)fI f,uf/ f =  O p(-7=  + +
h

+  ■

h2

y/n y/n nhp! 2 nhp/ 2 ) (4.17)
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Last term,

02
( O- 0 ) f / f , u f / f =  ^  ( E «  + E X >  ~ ° M >  | )

— L3 -+- L4

£ [£ 3] =  ± £ [(ft - tf .f .V f/? //? ]  <

g  p
n*K*P

n 3h'2P

C l<

+

(#1 - E “?■+("> - <m2/?//? E E «•«<*><*
i#  I

(« i - W  f t  1 f t  E ^ ^ f i
»¥l

f a * ( e  “?*?<)

(E E<9> -*'><*■ (e ^ )
\  ‘#1 /  V i^l /  .

(EA?.)
( e  E (" >  - W i -  W i f )  ( e W )

/  W i / .

n 5h 4P

C2
n 5h AP

crC 2
n 5h 4P

a2C2

n 5h*P

=  L5 Lq

E[L5\ = ^ C 2
n5h4PJ

a 2C 2

- ft)2*:;,+E E (*1 -
-»#1 j# ‘, 1

c fir1

A2 A4 A4 A6
+  ■

n 4h?P n 4h 3P n 3h 2p n 3h 2P„3I.2d)
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n2r 2 

a^C2 _

5 m  (» i-# !)(» !
-«'#I J#«.l

+
n 5h 4P EE E (®> - #‘)(#« - <>i)K“K<iK

.»#! i# » ,l M *J .l

r?r /l“ ^
n 2hP n 2hP

e [l <\ = E[(0t - ̂  - 4)«ls2/r/i/(/i/2)2
= E
< - S r E  n2h2P

n2h?p

< ^ 1  
-  n4/i4P

<x2C2
n 4h 4P

d l C l

^ - « M  ( s k  ! > * ' ■ )

( ^  ufKuK-u +  ^  UiUjKuK-ij 
\ i / l , 2  i#l,2M t,l,2

r  ( E

( e ^ - ^ u ) ( e « - « ^  ( e * ^ )
A i * i  /  \M 2  /  \ .¥ l,2  / .

5 3  P i ~  *<)(*»

( o , -« ,) (« ,  _ f l , ) M
JIJ2

.*9*1,2

+

+

+

n 4h 4P

£ ! £ 1 j
n4/i4P

^ C 2
n 4h 4P i

a^C2

n 4h 4PJ

E  £  ( *  -  W 2 “  W X i j K v K a t
Lj#1 M i,l,2

5 3  5 3
Lj#2 M i,1,2

E E ^ I -  W 2 -  t yK x jK i jK u K n
-<#l,2i#l,2

EE E (0i - fljXfc - Ok)K liK2iK ljK ik
.M l M i,2 M i,1,2
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=  +  A6) +  ? S ; 0 ( A 4 +  he) +  +  ft8)
n 3h 2P n ? f i2P

+  ^  +  ^ T ° (/l4 +  ^
_ /i4 h6

nhP nbP

Hence,
/i2 /i3 fc2 /i3

*-** n/iP/2 +  n/iP/2 +  v^T/iP/2 +  yJnYiPl'2

Combining all the terms I get,

T ( h ) = o * + O , ( h '  +  - L  +ft8 + /l'2
n/iP/2 y/nhP/2)  +  ° p ( 1 )

(4.18)

(4.19)

P ro p o sitio n  IV .2  R-2(h) =  Op( ^ + +  ̂  +  +  fl3/^ P/2 )+ terms do not depend

on h

Proof. Since for fixed h, jj/3̂  — /3oj| =  Op(n~l/2), where ||-|| is the Euclidean 

norm, then

=  Op(n " 1) S z f l l (4.20)

Let Xi =  E[Xi\Zi}+Vi =  then X* =  £i+vi and hence, X,- =  &—£,--FUi —0,-.

So,

S x f / f  ~  S ( s - s ) f / f + s » f / f + S » f / f + 2 S { s - i ) f / M / f  2 S ( a - i ) f / f , i ’f / f  ~  2 S v / / f , v / / f  ( 4 -2 1 )

One can show that, S^_i)f/f =  Op{hA +  hG +  -jjL +  Jd-), Suf// =  $  +  op(l),
C _   /") / 1 I ft2 \ C . .   ( hp , Jp_ , h , hp \ Q___________ _
° v f / f  P^nhP  ^  nkP>' ° <£-(.)!! f , u f / f  ~  y S  nkP/2 ~t_ / / / , & / / /  ~

O p ( nliP/2 -F  ^ 7 2  -+- y ^ p /2  +  ^ h p / i )  a n d  ^ v / / f , v f / f  ~  +  ^ 7 2 )-
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Therefore,

h2
) 4- terms do not depend on h

_ n y  1
ra n2hP

h6 1 h2
n n 2hp/2 n3!2hP/ 2

) 4- terms do not depend on h

(4.22)

P ro p o sitio n  IV .3  /23(h) =  Op(-~^ 4- rt3/2fep)4-terms do n ot depend, on h

Proof.

M *)\ < i  1-  x 'm x 'M  | | ( 4 - a ) | |
i= l 1

=  O p(n l/2) p (fl_a+u_ li)/7/i(c_c-+u_ D)/7 / l|

=  0 P( n ' 1/2) S { 0 - d ) f / u s - i ) f / f  +• S ( o - d ) j / f , v f / f  S { o - d ) f / f , u f / f  +- S u f / f ,  « - $ ) / / /

+ S u f / f , u f / f  S u f / f , 0 f / f  S u f / f , v f / f  +  S u f / f , u f / f (4.23)

One can show that, ^(o-^/V/.K-O/// — ^ p (^ 4 4- h6 4- ^  4- ^p), ^(0-<>)/7/>/7/ ~
f~) (  h? 1 _ l .  h  _ i_  f t2 C  .  .  .    a  t  fi2 , h.3 . f t2 , f t3 \

P^Tri ^ 7 " nhPl'1 ^  n h P /* ) '  ( S - 6 ) f / f , v f / f  U P ^ n h P /3 nW>/2 J n h P / 3 y^/iP/2  J >

s *f /m-i)f /f =  ° p ( $  +  7I  +  7J 72 +  ^ 1). S u f / f , v f / f  =  (Tuv +  op( l )  does not dependr t f * * ' '  ~  • “ /  /

^pT 2 -'’ ‘- ' i f / m - t ) f / f  =  O p ^ r t v / 3 ^ ~i_ v /h w /2 ' r 7 H/1P/2
/.2 /13 /12

on  h , S uf / f , v f / f  —  ^ p ( n/J>/2 +  nW/J ) ' 5 a

Suf/f,xjf/f =  °p(^?72 +  ^ 72) ^u///,u/7/ =  ^ p (^ ? 2  +  ^ 72)*

Therefore,

/ 23(h) =  Op(n l/,2)Op(h4 4- ^ 7 ) +  terms do not depend on h 

h4 1
=  Op(—=  4— ....., ) 4- terms do not depend on h 

y/n n3'2hp

k3
),

(4.24)

To show the uniform convergence I  simply prove it when p  =  1. For p  >  1 the
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proof will be more tedious but similar, for p >  5, the higher order kernel is used.

P ro p o sitio n  IV .4 For p =  1 and Hn =  [cra-1/(4+p\  cra-1/(4+p)] =  [cn-1/5, cn-1/5],

(i) suphe* n |fl2(70| =  oP(n-9/5+c)

(ii) suph&in \R3(h)\ =  op(n -13/10+c)

Proof. Since # 2(h) =  £ 5Z”= i(^ ~ ^ o y X iX'i0 h-l3o)f i / f i ,  hencesnph€-Hn ji?a(/i)| <
12 - i. And since 0h -  fa =  S . j /fS£f/M§+a)f/f, X  =suPhenn A - 4 SUP/i6W„ % / /

(£ — £) +  u — v, 6  =  0  — 9 and u =  u — u, so

S- f / f  ~  +  Suf / f  -hS if-/ f + 25(?_?-)/-//y/'/ /  +  2S(s-£)// f ,vf/ f  ~  2Svf/f,of/f (4-25)

Hence,

& h - 0 0  =  ( S ( Z - £ ) f / f  +  S uf / f  +  S o f / f  +■ 2 S « - - i ) f / f , u f / f  +  25(5-0///.6/7/ “  2 S v f / f , 0 f / f )  

x ( 5k-€)///,(»-«)/// +  5(€-o/7/,u/// +  5k-o///.fi/// +  s v f / w - e ) f / f  +  s v f ! r , u f / r  

^ u f / f M / f  +  S i f / U 0 - d ) f / f  +  S v f / f , u f / f  +  S 0 f / f , u f / f )  (4.26)

Similarly, /fe(fc) =  ~  P o so suP/ie* n |Jfe(fc)| <

I  will show the unifo rmsuph&tn ||(&  -  A ) || sup/l6W„ | |s ((

convergence of R z { h )  and R $ { h )  by proving the uniform convergence for each term 

on the right hand side of (4.26) in the following lemmas and use the fact from the 

central limit theorem that \/nSuf/f,vf/f V(0,cr2<&) in distribution to obtain the 

result. First note that, to show the uniform convergence, since Hn is compact, so for 

any 5 >  0, there exist a finite number Ng and a finite set Hrn =  { h i ,  h 2 , ..., h ^ s }  C 

Hn such that for all h  6  Hn, there exists h' E  H'n such that \h — h!\ <  8 . In this 

context, I let 8  =  (c — c)n- l /5-c for some constants c which will be selected for each 

cases differently later. Note that there are a t most nc elements in H'n- Hence, for any
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function <p(h), I decompose it to

sup |<£>(/i)| <  sup \<p{h')\ +  sup |(p(h) — ip(h')\ (4-27)
h€Hn h'&a^ heH n,h'£K.\h—h’\<6

So if I can show the convergence rate for each term on the right hand side of (4.27), 

then the uniform convergence rate of <p(h) is proved. ■

These following lemmas will be used to prove the proposition IVA.

Lemma IV .l s u p ^ ^ ^  |S(m-rhh)A //-% ,-m ,lo /w /l =  oP(n~4'5+<) for <; > 0,5 =  
\h -h '\< S

(c — c)ra~8/5, m =  6  or m =  £

Proof. I have to show that for any £ >  0, M  > 0  there exists an uq such that 

Vn > no

/
n 4 / 5 - <

h&aaPeK Ŝ{m~rhh)fh/f ~  >  M  I <  £ (4-28)
\ h - h ’\ < n - * / s

decompose \S{m_nh)fh/f -  S(m-mh,)fh,/f\ 38 

IV -m h)fh/f ~  {̂m—mh,)fK,/f\

“  5 Z  ( ( ” **■ “  -  ( m i  -
i

c  -v v r  i  _ i
(m,- -  my) (mi -  mk)KijhK ikh

1 v jW

- ^ 2  y ^ ( m« “  mj)~K ijh' ~  ^  5 2  X  (m‘ _  mj)(mi -  rnk)K ijh.K ikhf I
jW  fc£f,t J I
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5  H  {7^  5 3 ^  -  mi)2̂  -  ^  5 3 ^  -  mi)2̂ }< v j¥» j'#« J
+ S 53 I I2 53 53 (mi ~ mi)K ~ m k)K ijhK ikh

n i I n j*ik*5,i

5 3  5 3  ̂  “  rnk)Kijh>Kikh' >i#» Mj.‘ J I
=  l-^i ■+■ Ao\

1^1 = j X U  5 3 ( m ’ -  m i ) 2^ J f t  -  ^  5 3 ^  -

+ ^ 2  5 3 ( m‘ -  mi f Klh -  5 3 K  -  rrijftCf^, 1 1
J#* J I

§ E Efo - mi)2/<» ( f - ^)M ?Ef »»* - mi)2(K«» - *S*o
* j¥ *  V '  I I i j ^ i

C V^V"V \2 ê-> -H — /l'|
- ^ E  E < m < -  " * > -* « » — i m — 1

i j &

+ E E(m< - mi)2(Ar«'. + ir«/.')0|̂  -
1 Jv̂ i

I a 2\ = S e U e e  ("it -  m^TTii -  mk)KijhK ikh
‘ \  j¥* b£j,i

~hf* EE K  -  rnj)(nii -  mk)K ijhK ikh
j¥n k£j,i

+  ^ 2  53 53(m* -  mj ) K  -  mk)KijhK ikh
j¥* k¥j,i

~Tn  53 53 K “ mi) ( m* -  ™k)Kijh,K ikh, \
j¥ i  ht].i J I
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+ T!?hn EE(m- - mj){nii - mk)KijhKikh

- E E  (?7lj TTlj) (m*- Kikh
j¥« ¥iii

+  E E  (ttZ| mj)(?7ii m k)Kijh'Kikh
h£j,i

- E E  (mt -  mj){pii -  mk)KijuKikhf\

^  § E E  E  l(»N -  "*>(". -
t lc£j,i

Q____________
+  nW2 E E E  |(mi -  -  m ^ A ^ lA ,-^  -  K.y/,'1

‘ j¥» ie£j,i
C  f \ r ,

+  r i ^  E E E  |(m,- -  m^TTii -  mk)I<ijh,\\Kikh -  K ikh>\
i k^j,i

4 e e e  I (mi -  m_,)(mi -  mfc) Alj7l ATi/fch | — —
i k^j,i

rfihf2
I (mi -  m ^ n ii  -  mk)Kikh\D\Zi -  Zj \ ^ ~ g ^

i j^i fc£j,i

rii hn E E E  |(m, -  m_,)(m, -  mfc)A^|£>|Z , -  Zfc| ^
* i?4* Mi.*
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Hence,

V - v l A - / / !

C  »2 rj-'i {h +  h')\h — h!\
^  ^ E E ^  -  mi) Kfjh ---------- 5------1

i jjn
C \2 , i s  ts \ n l 7  r<\h - h'\rfihP- ^ ^  mi) (.Kijh ~F Kijhf)D\Zi Zj\

i j^i hh’

(h +  h')\h-h'\
ikh I+ i E E E  i(m ‘ -  -  mk)KijhK iKni

i j&  

nshrz £ E E  |(?Hi -  myXm, -  mk)K ikh\D\Zi ~  Zj \ ~ ^ r '
i j^i l&£j,i

n3/lr2 £ £ E  \(jtu -  mj){mi -  mk)Kijh,\D\Zi -  Zk\ '

c<  
nn

+

( ^ E E k — v )2)
\  « i# i /  \  i j¥*

~~4/s~ H 5 Z  5E i(m‘ ~  -  m*)i)
\  i jjti k£j,i )

rt- 2 / 5 n - 2 / 5  ( ̂ 3  EEE I On. -  fnj){pii -  rnk)\\Zi -  Zj{ \
\  i j^i k£j,i )

-2/5 ( n3 EEE |(m,- -  mj)(nii -  mk)\\Zi -  Zk\ J
\  i j^i h£j,i )

Ca5 
n -2/5n -

=  -<43

Using Markov’s inequality, I find that

|/i—ft'|<(c—c)n 8/5

<  E[nÂ A i \ / M

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

59

and

E[ni/5~<' A-j\ =  C[n~6/5~<’E[m.i — m2]2 -F E[(rri\ — m2)2|Zi — Z2|]

-F C'3n~l/5~<' E[\(rrii — m 2)(mx — m 3 )|]

4- E[\(mi -  mo)(mi -  m3)||Z 1 — Z2|]

+  C'^nT^E]\(m.l -  mo)(mi -  m3)||Z i -  Z3|]

Since all the expectations are finite, so it is obvious that such nQ exists. ■

Lemma IV .2  su p * ,^  l5 (m-mh,)/^//l =  °p(n~4/5+C) Ior  C >  0 , m =  0 or m =  £

Proof. First note that there are at most n7/5 elements in H'n, by Markov’s 

inequality,

P  ( n4/5-<’ sup IS | >  M  | < 2 n 7/5 sup P  (n.4/5_(,|S I > \ l \
\  h’&i'n J  -  \  1 < m - * h, > / * / / / '  )

<  2n7/5 (n-</M)'2L sup E[n4/5S . ]2i
~  veH 'n t m - A h, ) / v / / J

provided that a  positive integer Z >  -j^.

If I can show that su p ^g ^  £^[n4/5S(m rft )jf / / ]2i =  0(1) then the proof is done. 

Since E[S, . . , l2i =  E[(mi — mAfJfA'21, expand the right hand side first and(m —

then take the expectation, then the leading term will be

L = * 3 * 5 5 7 a l l -  Y  IK ™ . -  ' ^ ) K u ,
I  l 2 / # ‘2 i - t , ‘2 I-2 > —>‘ l , l  J = l

Given that the 2Zth moment of m is finite, it can be easily shown that E[L] =  

Op (h'4i).  For h! 6  H'n, E[L] =  Op(ri_4i/5), hence stiph,e^  E[n‘1/5S ;)/a//]2/ =

0 (1). ■

The next lemma will be used to prove uniform convergence. The proof of the 

lemma is similar to the lemma IV. 1 and lemma IV.2, so I will omit the proof.
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L em m a IV .3 for any £ >  0,

d)  su p ,* * .,™ . |SW l// - SW>,„ |  -  op( n - ^ < )  /o r  * =  (c - c)n- /» ,  t =  u or t =  o
\h-h\<S ^  _ I _  o tn-4/5+C\

( l % )  S U p h & i n . h ' & H n  l ^ ( m - m h ) / h / / , t h A / /  (m —»nh/ ) / ft/ / / t h ' f h ' l f
Ih-Zi'Ki

/o r 5 =  (c — c)n_8//5, m =  9 o rm  — ,̂ and t =  u or t = v

( H i )  S \ i p h G ' H n M ' S H ' n  ( r n—m ^ f h / f , t f h / f  ^ ( m — /  f , t f h t /  f \  ^

/o r 5 =  (c -  c)n-3/2, m =  9 or m = £ , and t =  u o r t  =  v

(iv) suph&in.h>€H'n \SmhU /Uh/f  -  Smh,ih,/f,tfh,/f\ =  °p(n ^°7' 5 =  (c “  ̂ )n ' -

m =  u,t =  v or m =  v, t — u

(v) suph6-H„,/1'eK  l‘̂ mhA//,«hA//“ ^ ‘fl'A '//.vA '//I — °p n̂ ) f o r 5 —(c c)n
\ h —h ' \ < 6

m =  u,t — v or m =  v, t =  u

( l l i )  S U p h € H n , h ' € H ^  | S ( m - m h ) f h / f , ( t - i h ) f h / f  ~  ^ { m - r h h , ) f h , / f ^ t - t h , ) f h, / f \  ~  ° p ( n   ̂ ^ ° r
|/i-h'|<<5

(J =  (c — c)n~8/s, m = 0  or m =  and t =  9 or t =  £

(vii) s u p I S . ^ , , , 1  =  O p tn -V ^) fa r t  =  u a r t  =  v

(mi)  s u p ^ .^  =  OpC"-4"-* ) J *  m =  e or m =  ?, and t =  u or

t =  u

(ix) sup***, |S(m-*„,)/v , /,,/„,//! =  UpCn-9' ' ^ )  f a r m = t ) a r m  =  i ,a .n d t  =  u o r

t —V

(x) s u p s ^ ,  =  •>p("-9/l0+<) /ou m  =  u,t  =  v  o r m  =  v, t =  u

(xi) s u p ^ ,  IS * ,,/,,///,,/ ,,//!  =  u ,(n -9/l0+<) /o r  m =  u ,t =  v  w m  =  s , i = u

f® ; sup,,,^ , =  o , ( u - /5+<) /o rm  =  9 o rm  =  ?, and t  =  9

or £ =  £
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CHAPTER V 

CONCLUSION

In chapter H, I propose using a general series method to estimate the semiparamet

ric partially linear smooth coefficient model. I show that the estimator 7  has the 

x/n-normality property and it attains the semiparametric efficiency bound when the 

error is homoskedastic. I also show that it is easy to modify the method to the het- 

roskedastic error case and that the estimator is still efficient under the modification. 

The convergence rate of the smooth coefficient function is proven and the primitive 

conditions of the power series and B-spline are restated as examples.

Where the Monte Carlo simulation is also conducted, three different methods 

of estimation are used. I find that for every sample size and every data generating 

process used in this simulation, the series estimations perform better than the kernel 

method. In particular, the B-spline method performs best and the kernel method is 

the last.

The application of the semiparametic partially linear smooth coefficient model 

is illustrated by applying it to forecasting the inflation rate using the unemployment 

rate and the industry capacity utilization rate. The specification test results show 

that the semiparametric partially linear smooth coefficient model is more appropriate 

than the full smooth coefficient model and the parametric autoregressive model.

Chapter HI has made several notable contributions. By not relying on the 

straightjacket of a linear VAR forecasting model, I show strong and robust evidence 

that money growth has been useful as an indicator of future inflation in the US. The 

finding of a strong and sufficiently stable relationship between money growth and 

inflation is the opposite of that found in most recent work. In particular, there is a  

near consensus that the only relationship between money growth and inflation is at
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long horizons. I have presented evidence that money growth has marginal predictive 

content for inflation a t horizons as short as one month. More generally, the results 

indicate that nonparametric methods might be useful for the monetary policy process. 

Nonlinearities in the relationships of interest to central bankers appear to be strong. 

When modeling inflation, the benefits of relaxing the assumptions on functional form 

substantially outweigh any disadvantages of nonparametric estimation.

In chapter IV, the uniform convergence rate of the cross-validation bandwidth 

is proved. I propose that, to get the parametric estimates, the bandwidth need not 

be prespecified; and the parameter estimates and the cross-validation bandwidth can 

be obtained simultaneously by minimizing a sum of squared errors. I show that the 

parameter estimates are still \/u-consistent and asymptotically normally distributed 

and the cross-validation bandwidth estimates also converge in probability not only 

pointwise but also uniformly over some shrinking compact sets to the theoretically 

optimal bandwidth. This result is stronger than the pointwise convergence in Li 

(1996) and Robinson (1988). However, the boundednesses of higher moments of all 

the functions in the model are needed to obtain the uniform convergence property.
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